高レベル放射性廃液中の白金族物質に 対するセラミックスナノシートの収着特性

(株式会社アート科学)長谷川 良雄·菱沼 行男·鈴木 将 (原子力機構)天本 一平·横澤 拓磨・小林 秀和・田口 富嗣 (日本原燃分析)山川 敦

<u>セラミックスナノシートの製造</u>

<u>セラミックスナノシート前駆体の製造</u>

<u>シリカ前駆体</u>(L:CH₃COCH₂COOC₂H₅、Et:C₂H₅)

$$\begin{array}{c} \text{HCI} \\ \text{n Si(OEt)}_4 + (\text{n-1}) \\ \text{H}_20 \end{array} \begin{array}{c} \text{HCI} \\ \text{EtO} \end{array} \left(\begin{array}{c} \text{OEt} \\ \text{Si-0} \\ \text{OEt} \end{array} \right) \begin{array}{c} \text{OEt} \\ \text{OEt} \end{array} \right) \\ \text{OEt} \end{array} \begin{array}{c} \text{OEt} \\ \text{n} \end{array}$$

ポリシロキサン

$\frac{PJUEJ fine M}{(L:CH_{3}COCH_{2}COOC_{2}H_{5}, Pr:CH(CH_{3})_{2}, Bu:n-C_{4}H_{9})}$ $AI(0'Pr)_{2}L + 0.5 L AI(0'Pr)_{1.5}L_{1.5} + 0.5 'PrOH$ $AI(0'Pr)_{1.5}L_{1.5} + 0.5 BuOH AI(0'Pr)_{1.0}(OBu)_{0.5}L_{1.5} + 0.5 'PrOH$ $AI(0'Pr)_{1.0}(OBu)_{0.5}L_{1.5} + H_{2}O \overset{HCI}{AI(OH)_{1.0}(OBu)_{0.5}L_{1.5}} + PrOH$ $n AI(0H)_{1.0}(OBu)_{0.5}L_{1.5} L_{1.5} L \begin{pmatrix} L & OBu & L \\ AI - 0 - AI - 0 - AI - \cdots \end{pmatrix} OBu + x BuOH + y L$ $\pi'UPUEJ = t = t = t$

<u>収着試験用セラミックスナノシート</u>

目的:通常のセラミックスナノシート(-M-O-結合で構成される)とゲルナノシート(-M-OH基を含有する)の2種類を試作し、M-OH基の効果(化学吸着)を確認 したい。

ナノシート試料		乾燥温度/	乾燥時間/h	焼成温度/	焼成時間/h
ゲルナノシート	Al ₂ O ₃	65	18	200*	
	SiO ₂			100	
	Mullite			150*	18
	ZrO ₂			200	
	TiO ₂			200*	
セラミックス ナノシート	Al ₂ O ₃	65	18	1000	
	SiO ₂			500	
	Mullite			1000	1
	ZrO ₂			1000	
	TiO ₂			500	

*試料溶液の硝酸濃度では50%程度溶解してしまう。

<u>セラミックスナノシートの構造</u>

BET法によるセラミックスナノシートの比表面積

セラミック	7スナノシート試料	比表面積/m²•g ⁻¹	
組成	熱処理温度/		
ZrO ₂	1000	8.2	
Mullite	1000	10	
SiO ₂	500	670	
TiO ₂	500	58	
Al ₂ O ₃	1000	160	

測定方法:

測定装置∶日本ベル株式会社製Belsorp 28SA 前処理∶400 、10⁻³torr

吸着法:77Kで定容式窒素ガス吸着法(BET法)

細孔径分布:DH法

<u>セラミックスナノシートの細孔分布</u>

<u>セラミックスナノシートのTEM観察</u>

SiO₂ nanosheet

Mullite nanosheet

セラミックスナノシートのXRD

SiO₂:アモルファス